login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (1/30)*A028361(n) for n>=3.
0

%I #7 Aug 17 2024 23:10:40

%S 1,9,153,5049,328185,42335865,10880317305,5581602777465,

%T 5721142846901625,11722621693301429625,48027581077455957173625,

%U 393489971767596657123509625,6447333187412071226968705205625,211272661218306162036537500883125625

%N a(n) = (1/30)*A028361(n) for n>=3.

%C a(n+1)/a(n) is an integer for n>=0, so (a(n)) is a divisibility sequence.

%F a(n) = (1/30)(s**t)(n), where s = A000012 = (1,1,1,...), t = A000079 = (1,2,4,8,16,...), and ** denotes obverse convolution, as in A374848.

%F a(n) = A060202(n+1)/180. - _Hugo Pfoertner_, Aug 07 2024

%t s[n_] := 1; t[n_] := 2^n;

%t u[n_] := Product[s[k] + t[n - k], {k, 0, n}]

%t (1/30) Table[u[n], {n, 2, 20}]

%Y Cf. A000012, A000079, A060202, A374848.

%K nonn

%O 3,2

%A _Clark Kimberling_, Aug 05 2024