login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of incongruent n-sided Reinhardt polygons.
2

%I #32 Aug 23 2024 10:24:21

%S 0,0,1,0,1,1,1,0,2,1,1,2,1,1,5,0,1,5,1,2,10,1,1,12,4,1,23,2,1,41,1,0,

%T 64,1,12,102,1,1,191,12,1,338,1,2,777,1,1,1088,9,34,2057,2,1,3771,66,

%U 12,7156,1,1,17856,1,1,26811,0,193,48272,1,2,92206,385,1,175792

%N Number of incongruent n-sided Reinhardt polygons.

%D Karl Reinhardt, Extremale Polygone gegebenen Durchmessers. Jahresber. Deutsche Math.-Verein. 31 (1922): 251-70.

%H Kevin G. Hare and Michael J. Mossinghoff, <a href="https://doi.org/10.1007/s00454-012-9479-">Sporadic Reinhardt Polygons</a>, Discrete & Computational Geometry. An International Journal of Mathematics and Computer Science 49, no. 3 (2013): 540-57.

%H Kevin G. Hare and Michael J. Mossinghoff, <a href="https://doi.org/10.1007/s10711-018-0326-5">Most Reinhardt Polygons Are Sporadic</a>, Geom. Dedicata 198 (2019): 1-18.

%H Michael J. Mossinghoff, <a href="https://doi.org/10.1016/j.jcta.2011.03.004">Enumerating Isodiametric and Isoperimetric Polygons</a>, J. Combin. Theory Ser. A 118, no. 6 (2011): 1801-15.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Reinhardt_polygon">Reinhardt polygon</a>.

%F a(n) = A373694(n) + A373695(n). - _Bernd Mulansky_, Aug 23 2024

%Y Cf. A373694, A373695.

%K nonn

%O 1,9

%A _Bernd Mulansky_, Jul 21 2024

%E More terms from _Bernd Mulansky_, Aug 23 2024