login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of deco polyominoes of height 2n and vertical height n.
2

%I #9 Jul 22 2024 05:49:54

%S 1,1,10,216,8181,489753,43073059,5251140144,847811871333,

%T 175006259417547,44939475107574752,14046429669829943012,

%U 5249989348656458769520,2312011774544840687484876,1184766852578716585055014620,698927709348312453031204116720

%N Number of deco polyominoes of height 2n and vertical height n.

%H Alois P. Heinz, <a href="/A374794/b374794.txt">Table of n, a(n) for n = 0..232</a>

%H Elena Barcucci, Sara Brunetti and Francesco Del Ristoro, <a href="http://www.numdam.org/item?id=ITA_2000__34_1_1_0">Succession rules and deco polyominoes</a>, Theoret. Informatics Appl., 34, 2000, 1-14.

%H Elena Barcucci, Alberto Del Lungo, and Renzo Pinzani, <a href="https://doi.org/10.1016/0304-3975(95)00199-9">"Deco" polyominoes, permutations and random generation</a>, Theoretical Computer Science, 159, 1996, 29-42.

%F a(n) = A121692(2n,n).

%Y Cf. A121692.

%K nonn

%O 0,3

%A _Alois P. Heinz_, Jul 20 2024