login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A374793
a(n) is the largest k such that tau(k)^n >= k.
0
2, 1260, 27935107200, 29564884570506808579056000
OFFSET
1,1
COMMENTS
Let prime(j)# denote the product of the first j primes, A002110(j); then
a(1) = prime(1)# = 2,
a(2) = 6*prime(4)# = 1260,
a(3) = 2880*prime(8)# = 2.7935...*10^10,
a(4) = 907200*prime(16)# = 2.9564...*10^25,
a(5) >= 259459200*prime(30)# = 8.2015...*10^54,
a(6) >= 3238237626624000*prime(52)# = 3.4403...*10^111,
a(7) >= 248818180782850398720000*prime(91)# = 5.4351...*10^218.
EXAMPLE
27935107200 = 2^7 * 3^3 * 5^2 * 7^1 * 11^1 * 13^1 * 17^1 * 19^1,
so tau(27935107200) = (7+1)*(3+1)*(2+1)*(1+1)*(1+1)*(1+1)*(1+1)*(1+1) = 8*4*3*2*2*2*2*2 = 3072; 3072^3 = 28991029248 > 27935107200, and there is no larger number k such that tau(k)^3 >= k, so a(3) = 27935107200.
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Jon E. Schoenfield, Jul 20 2024
STATUS
approved