login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the number of subsets x of Z_n such that #x * #y = n and x + y = Z_n for some subset y of Z_n.
1

%I #14 Jul 22 2024 15:20:31

%S 1,3,4,11,6,24,8,59,40,68,12,284,14,192,384,795,18,1590,20,2876,2552,

%T 2192,24,17972,3156,8388,20560,35620,30,116474,32,144091,178512,

%U 131396,94968,1118426,38,524688,1596560,2569884,42,7280934,44

%N a(n) is the number of subsets x of Z_n such that #x * #y = n and x + y = Z_n for some subset y of Z_n.

%H Rémy Sigrist, <a href="/A374770/a374770.txt">C++ program</a>

%F a(p) = p + 1 for any prime number p.

%F a(n) <= A056045(n).

%e For n = 8: the principal subsets x (unique up to translation) alongside an appropriate subset y and the number of distinct translations are:

%e x y #

%e ----------------- ----------------- -

%e {0} {0,1,2,3,4,5,6,7} 8

%e {0,1} {0,2,4,6} 8

%e {0,2} {0,1,4,5} 8

%e {0,3} {0,2,4,6} 8

%e {0,4} {0,1,2,3} 4

%e {0,1,2,3} {0,4} 8

%e {0,2,3,5} {0,4} 8

%e {0,1,4,5} {0,2} 4

%e {0,2,4,6} {0,1} 2

%e {0,1,2,3,4,5,6,7} {0} 1

%e So a(8) = 8 + 8 + 8 + 8 + 4 + 8 + 8 + 4 + 2 + 1 = 59.

%o (C++) // See Links section.

%o (Python)

%o from itertools import combinations

%o from sympy import divisors, isprime

%o def A374770(n):

%o if isprime(n): return n+1

%o s = {}

%o for d in divisors(n,generator=True):

%o t = {}

%o for a in combinations(range(n),d):

%o for i in range(1,n):

%o if (w:=tuple((i+b)%n for b in a)) in t:

%o t[w]+=1

%o break

%o else:

%o t[a] = 1

%o s[d] = t

%o c = 0

%o for d in divisors(n,generator=True):

%o for a in s[d]:

%o for b in s[n//d]:

%o if len({(x+y)%n for x in a for y in b})==n:

%o c += s[d][a]

%o break

%o return c # _Chai Wah Wu_, Jul 22 2024

%Y Cf. A045654, A056045, A374712.

%K nonn,more

%O 1,2

%A _Rémy Sigrist_, Jul 19 2024