Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #32 Sep 03 2024 00:37:12
%S 1,6,24,120,570,2850,14100,70500,351750,1758750,8790000,43950000,
%T 219731250,1098656250,5493187500,27465937500,137329218750,
%U 686646093750,3433228125000,17166140625000,85830691406250,429153457031250,2145767226562500,10728836132812500,53644180371093750
%N Number of nonisomorphic spanning trees of the nC_5-snake with constant distance between cutpoints.
%C a(n) is the number of spanning trees of the cyclic snake formed with n copies of the cycle on 5 vertices. A cyclic snake is a connected graph whose block-cutpoint is a path and all its n blocks are isomorphic to the cycle C_m.
%D Christian Barrientos, Graceful labelings of cyclic snakes, Ars Combin., 60 (2001), 85-96.
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (5,5,-25).
%F a(n) = (3/2)*(3* 5^(n - 2) + 5^floor((n - 2)/2)) for n > 1.
%F From _Stefano Spezia_, Jul 23 2024: (Start)
%F G.f.: x*(1 + x - 11*x^2 - 5*x^3)/((1 - 5*x)*(1 - 5*x^2)).
%F E.g.f.: (24 + 10*x - 9*cosh(5*x) - 15*cosh(sqrt(5)*x) - 9*sinh(5*x) - 3*sqrt(5)*sinh(sqrt(5)*x))/50. (End)
%e For n=2, a(2)=6 because there are 6 spanning trees of 2C_5-snake
%e __ __ __ __ __ __ __ __, __ __ __ __|__ __ __, __ __ __ \/__ __ __,
%e __ __ __
%e __ __ __ __|__ __, __ __ __|__ __, __ __|__ __
%e | |__
%t Drop[CoefficientList[Series[x*(1 + x - 11*x^2 - 5*x^3)/((1 - 5*x)*(1 - 5*x^2)),{x,0,30}],x],1] (* _Georg Fischer_, Aug 09 2024 *)
%o (PARI) for(n=1, 30, print1(if(n==1,1,(3/2)*(3* 5^(n - 2) + 5^floor((n - 2)/2))),",")) \\ _Georg Fischer_, Aug 09 2024
%Y Cf. A374721.
%K nonn,easy
%O 1,2
%A _Christian Barrientos_, Jul 17 2024
%E a(25) corrected by _Georg Fischer_, Aug 09 2024