login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (1/2)*Product_{k=0..n} (F(k)+2), where F=A000045 (Fibonacci numbers).
1

%I #13 Aug 04 2024 20:46:10

%S 1,3,9,36,180,1260,12600,189000,4347000,156492000,8920044000,

%T 811724004000,118511704584000,27850250577240000,10555244968773960000,

%U 6459809920889663520000,6388752011759877221280000,10215614466804043676826720000,26417579011155256948273897920000

%N a(n) = (1/2)*Product_{k=0..n} (F(k)+2), where F=A000045 (Fibonacci numbers).

%C a(n+1)/a(n) is an integer for n>=0, so (a(n)) is a divisibility sequence.

%t q[n_] := Fibonacci[n]

%t p[n_] := Product[q[k] + 2, {k, 0, n}]

%t Table[Simplify[p[n]/2], {n, 0, 20}]

%o (PARI) a(n) = prod(k=0, n, fibonacci(k)+2)/2; \\ _Michel Marcus_, Aug 04 2024

%Y Cf. A000045, A082480.

%K nonn

%O 0,2

%A _Clark Kimberling_, Aug 03 2024