login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(n) = Product_{k=0..n+1} L(k)+4, where L=A000032 (Lucas numbers).
1

%I #4 Jul 31 2024 11:28:52

%S 6,30,210,1680,18480,277200,6098400,201247200,10263607200,

%T 821088576000,104278249152000,21168484577856000,6900925972381056000,

%U 3622986135500054400000,3068669256768546076800000,4197939543259371033062400000,9281644330146469354100966400000

%N a(n) = Product_{k=0..n+1} L(k)+4, where L=A000032 (Lucas numbers).

%C a(n+1)/a(n) is an integer for n>=0, so (a(n)) is a divisibility sequence.

%t w[n_] := Product[LucasL[k] + 4, {k, 0, n}]

%t Table[w[n], {n, 0, 20}]

%Y Cf. A000032, A374654, A374661.

%K nonn

%O 0,1

%A _Clark Kimberling_, Jul 28 2024