login
a(n) = Product_{k=0..n} L(k)+3, where L=A000032 (Lucas numbers).
1

%I #4 Jul 31 2024 11:28:36

%S 5,20,120,840,8400,117600,2469600,79027200,3951360000,312157440000,

%T 39331837440000,7945031162880000,2582135127936000000,

%U 1353038807038464000000,1144670830754540544000000,1564765025641456923648000000,3458130706667619801262080000000

%N a(n) = Product_{k=0..n} L(k)+3, where L=A000032 (Lucas numbers).

%C a(n+1)/a(n) is an integer for n>=0, so (a(n)) is a divisibility sequence.

%t w[n_] := Product[LucasL[k] + 3, {k, 0, n}]

%t Table[w[n], {n, 0, 20}]

%Y Cf. A000032, A374654, A374659.

%K nonn

%O 0,1

%A _Clark Kimberling_, Jul 28 2024