Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 Jul 31 2024 11:28:36
%S 5,20,120,840,8400,117600,2469600,79027200,3951360000,312157440000,
%T 39331837440000,7945031162880000,2582135127936000000,
%U 1353038807038464000000,1144670830754540544000000,1564765025641456923648000000,3458130706667619801262080000000
%N a(n) = Product_{k=0..n} L(k)+3, where L=A000032 (Lucas numbers).
%C a(n+1)/a(n) is an integer for n>=0, so (a(n)) is a divisibility sequence.
%t w[n_] := Product[LucasL[k] + 3, {k, 0, n}]
%t Table[w[n], {n, 0, 20}]
%Y Cf. A000032, A374654, A374659.
%K nonn
%O 0,1
%A _Clark Kimberling_, Jul 28 2024