Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Jul 12 2024 19:11:39
%S 1,3,32,870,46224,4037880,522956160,93928267440,22324392518400,
%T 6780385526302080,2561327494111411200,1177652997443424902400,
%U 647478071469567800985600,419450149241406188889984000,316196664211373618844934963200,274410818470142134209609852672000
%N a(n) = Sum_{j=n..2n} j!.
%H Alois P. Heinz, <a href="/A374574/b374574.txt">Table of n, a(n) for n = 0..224</a>
%F a(n) = a(n-1) - (n-1)! + (2*n-1)! + (2*n)! with a(0) = 1.
%F a(n) = Sum_{j=0..n} (n + j)!.
%F a(n) = A100822(2n,n).
%F a(n) = A143122(2n,n).
%p a:= proc(n) option remember; `if`(n<3, [1, 3, 32][n+1],
%p ((16*n^3-16*n^2-n+2)*a(n-1)-(n-1)*(16*n^3-20*n^2+6*n-1)
%p *a(n-2)+2*(2*n-1)*(4*n+1)*(n-1)*(n-2)*a(n-3))/(4*n-3))
%p end:
%p seq(a(n), n=0..15);
%p # second Maple program:
%p a:= proc(n) option remember; `if`(n=0, 1,
%p a(n-1) -(n-1)! +(2*n-1)! +(2*n)!)
%p end:
%p seq(a(n), n=0..15);
%Y Row sums of A143084.
%Y Cf. A000142, A100822, A143122, A296591 (the same for product).
%Y Diagonal of A054115, A211370.
%K nonn
%O 0,2
%A _Alois P. Heinz_, Jul 11 2024