Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Aug 20 2024 22:00:16
%S 1,4,22,116,613,3240,17124,90504,478333,2528092,13361506,70618412,
%T 373233385,1972618128,10425707976,55102092624,291226324249,
%U 1539193302772,8134965235054,42995028146468,227237903531533,1201000837247928,6347545848001836,33548135057767512
%N Expansion of o.g.f. 1/(1 - 4*x - 6*x^2 - 4*x^3 - x^4).
%C a(n) is the number of generalized compositions of n using parts of size at most 4 where there are binomial(4,i) types of i (see example).
%C The coefficients of 1/(1 - C(k,1)*x - C(k,2)*x^2 - C(k,3)*x^3 - ... - C(k,k)*x^k) give the number of generalized compositions of n using parts of size at most k where there are binomial(k,i) types of i.
%C Related sequences that count the number of generalized compositions of n using parts of size at most k where there are binomial(k,i) types of i are A108368(n+1), A000129(n+1), and A000012(n) for k = 3, 2, 1, respectively.
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,6,4,1).
%F a(n) = 4*a(n-1) + 6*a(n-2) + 4*a(n-3) + a(n-4), n=>4.
%F a(n) = Sum_{k>=0} (1/2)^(k+1) * binomial(4*k,n). - _Seiichi Manyama_, Aug 03 2024
%e The following table gives the type of composition, the number of such compositions, and the total number of compositions of n = 6 using parts of size at most 4 where there are binomial(4,i) types of i (ie. 4 types of 1, 6 types of 2, 4 types of 3 and 1 type of 4):
%e Type Number Total
%e 4+2 2 12
%e 3+3 1 16
%e 4+1+1 3 48
%e 3+2+1 6 576
%e 2+2+2 1 216
%e 3+1+1+1 4 1024
%e 2+2+1+1 6 3456
%e 2+1+1+1+1 5 7680
%e 1+1+1+1+1+1 1 4096,
%e adding to a(6) = 17124.
%t CoefficientList[Series[1/(1-4*x-6*x^2-4*x^3-x^4),{x,0,23}],x] (* _Stefano Spezia_, Jul 09 2024 *)
%Y Cf. A000012, A000129, A108368, A374455.
%Y Cf. A145840.
%K nonn,easy
%O 0,2
%A _Enrique Navarrete_, Jul 08 2024