login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Inverse permutation to A373498.
11

%I #17 Aug 04 2024 13:35:05

%S 2,1,3,9,4,7,6,8,5,10,20,11,18,13,16,15,17,12,19,14,21,35,22,33,24,31,

%T 26,29,28,30,23,32,25,34,27,36,54,37,52,39,50,41,48,43,46,45,47,38,49,

%U 40,51,42,53,44,55

%N Inverse permutation to A373498.

%C Triangle read by rows where row n is a block of length 4*n-1 which is a permutation of the numbers of its constituents.

%C Generalization of the Cantor numbering method for two adjacent diagonals. A pair of neighboring diagonals are combined into one block.

%C The sequence is an intra-block permutation of positive integers.

%C The sequence A373498 generates the cyclic group C6 under composition. The elements of C6 are the successive compositions of A373498 with itself: A374494 = A373498(A373498) = A373498^2, A370655 = A373498^3, A374531 = A373498^4, A374447 = A373498^5. The identity element is A000027 = A373498^6. - _Boris Putievskiy_, Aug 03 2024

%H Boris Putievskiy, <a href="/A374447/b374447.txt">Table of n, a(n) for n = 1..9870</a>

%H Boris Putievskiy, <a href="https://arxiv.org/abs/2310.18466">Integer Sequences: Irregular Arrays and Intra-Block Permutations</a>, arXiv:2310.18466 [math.CO], 2023.

%H <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>

%F Linear sequence:

%F a(n) = P(n) + (L(n)-1)*(2*L(n)-1), where L(n) = ceiling((sqrt(8*n+1)-1)/4),

%F L(n) = A204164(n), P(n) = 4*L(n) - R(n) - 1, if R(n) <= 2*L(n) and R(n) mod 2 = 1, P(n) = R(n) - 1, if R(n) <= 2*L(n) and R(n) mod 2 = 0, P(n) = R(n), if R(n) > 2*L(n) and R(n) mod 2 = 1, P(n) = - 2*L(n) + R(n), if R(n) > 2*L(n) and R(n) mod 2 = 0.

%F a(n) = A373498(A373498(A373498(A373498(A373498(n))))).

%F Triangular array T(n,k) for 1 <= k <= 4*n-1 (see Example):

%F T(n,k) = (n-1)*(2*n-1) + P(n,k), where P(n,k) = 4*n - k - 1, if k <= 2*n and k mod 2 = 1, P(n,k) = k-1, if k <= 2*n and k mod 2 = 0, P(n,k) = k, if k > 2*n and k mod 2 = 1, P(n,k) = -2*n + k, if k > 2*n and k mod 2 = 0.

%e Triangle begins:

%e k = 1 2 3 4 5 6 7 8 9 10 11

%e n=1: 2, 1, 3;

%e n=2: 9, 4, 7, 6, 8, 5, 10;

%e n=3: 20, 11, 18, 13, 16, 15, 17, 12, 19, 14, 21;

%e The triangle's rows can be arranged as two successive upward antidiagonals in an array:

%e 2, 3, 7, 10, 16, 21, ...

%e 1, 4, 5, 13, 14, 26, ...

%e 9, 8, 18, 19, 31, 34, ...

%e 6, 11, 12, 24, 25, 41, ...

%e 20, 17, 33, 32, 50, 51, ...

%e 15, 22, 23, 39, 40. 60, ...

%e Subtracting (n-1)*(2*n-1) from each term in row n is a permutation of 1 .. 4*n-1:

%e 2,1,3,

%e 6,1,4,3,5,2,7,

%e 10,1,8,3,6,5,7,2,9,4,11

%e ...

%e The inverse permutation of each permutation in example A373498 is equal to the corresponding permutation above:

%e (2,1,3)^(-1) = (2,1,3),

%e (2,6,4,3,5,1,7)^(-1) = (6,1,4,3,5,2,7),

%e (2,8,4,10,6,5,7,3,9,1,11)^(-1) = (10,1,8,3,6,5,7,2,9,4,11).

%e The 5th power of each permutation in example A373498 is equal to the corresponding permutation above:

%e (2,1,3)^5 = (2,1,3),

%e (2,6,4,3,5,1,7)^5 = (6,1,4,3,5,2,7),

%e (2,8,4,10,6,5,7,3,9,1,11)^5 = (10,1,8,3,6,5,7,2,9,4,11).

%t Nmax=21;

%t a[n_]:=Module[{L,R,P,Result},L=Ceiling[(Sqrt[8*n+1]-1)/4];

%t R=n-(L-1)*(2*L-1); P=Which[R<=2*L&&Mod[R,2]==1,4*L-R-1,R<=2*L&&Mod[R,2]==0,R-1,R>2*L&&Mod[R,2]==1,R,R>2*L&&Mod[R,2]==0,-2*L+R];

%t Result=P+(L-1)*(2*L-1);

%t Result]

%t Table[a[n],{n,1,Nmax}]

%t Nmax=21;

%t a[n_]:=Module[{L,R,P,Result},L=Ceiling[(Sqrt[8*n+1]-1)/4];

%t R=n-(L-1)*(2*L-1); P=Which[R<=2*L-1&&Mod[R,2]==1,R+1,R<=2*L-1&&Mod[R,2]==0,R+2*L,R>2*L-1&&Mod[R,2]==1,R,R>2*L-1&&Mod[R,2]==0,4*L-1-R];

%t Result=P+(L-1)*(2*L-1);

%t Result]

%t Table[a[n],{n,1,Nmax}] (* A373498 *)

%t Table[a[a[a[a[a[n]]]]],{n,1,Nmax}] (* this sequence *)

%Y Cf. A000027, A004767 (row lengths), A204164, A370655, A373498, A374494, A374531.

%K nonn,tabf

%O 1,1

%A _Boris Putievskiy_, Jul 08 2024