login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A374319
Number of partitions of [n] such that the number of blocks of size k is zero or a divisor of k for every k.
5
1, 1, 1, 4, 8, 31, 82, 274, 1626, 5135, 26751, 125489, 1020692, 4333707, 31083613, 132960104, 1323145731, 8282668312, 70017330978, 423293287673, 3135764479898, 30762429056580, 269133472001923, 2185746568531948, 15121514389566421, 147045774699171957
OFFSET
0,4
LINKS
EXAMPLE
a(0) = 1: the empty partition.
a(1) = 1: 1.
a(2) = 1: 12.
a(3) = 4: 123, 12|3, 13|2, 1|23.
a(4) = 8: 1234, 123|4, 124|3, 12|34, 134|2, 13|24, 14|23, 1|234.
a(5) = 31: 12345, 1234|5, 1235|4, 123|45, 1245|3, 124|35, 125|34, 12|345, 12|34|5, 12|35|4, 12|3|45, 1345|2, 134|25, 135|24, 13|245, 13|24|5, 13|25|4, 13|2|45, 145|23, 14|235, 14|23|5, 15|234, 1|2345, 15|23|4, 1|23|45, 14|25|3, 14|2|35, 15|24|3, 1|24|35, 15|2|34, 1|25|34.
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(`if`(j=0 or irem(i, j)=0, b(n-i*j, i-1)/j!*
combinat[multinomial](n, i$j, n-i*j), 0), j=0..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..27);
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 04 2024
STATUS
approved