login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Numbers k such that K(15 / k) != K((-1)^floor(k/2)*k / 15), where K(a/b) is the Kronecker symbol. Row 4 of A374188.
5

%I #8 Jul 01 2024 19:19:14

%S 2,26,28,34,44,56,58,74,76,82,88,92,98,106,112,122,124,146,152,154,

%T 172,176,178,184,188,194,202,218,224,226,236,242,248,266,268,274,284,

%U 298,304,314,316,322,332,338,344,346,352,362,364,368,376,386,394,412,418

%N Numbers k such that K(15 / k) != K((-1)^floor(k/2)*k / 15), where K(a/b) is the Kronecker symbol. Row 4 of A374188.

%o (SageMath) # see A374188

%o print(A374188_row(4, 350))

%Y Cf. A374188, A374180, A374181, A374182, A374184.

%Y Cf. A372728 (Kronecker).

%K nonn

%O 1,1

%A _Peter Luschny_, Jun 30 2024