login
Numbers k such that K(3 / k) != K((-1)^floor(k/2)*k / 3), where K(a/b) is the Kronecker symbol. Row 1 of A374188.
5

%I #10 Jul 01 2024 19:18:43

%S 2,10,26,28,34,44,50,56,58,74,76,82,88,92,98,106,112,122,124,130,140,

%T 146,152,154,170,172,176,178,184,188,194,202,218,220,224,226,236,242,

%U 248,250,266,268,274,280,284,290,298,304,314,316,322,332,338,344,346

%N Numbers k such that K(3 / k) != K((-1)^floor(k/2)*k / 3), where K(a/b) is the Kronecker symbol. Row 1 of A374188.

%o (SageMath) # see A374188

%o print(A374188_row(1, 350))

%Y Cf. A374188, A374181, A374182, A374183, A374184.

%Y Cf. A372728 (Kronecker).

%K nonn

%O 1,1

%A _Peter Luschny_, Jun 30 2024