login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The number of prime-indexed primes below 2^n.
2

%I #7 Jun 29 2024 10:58:38

%S 0,0,1,2,3,5,7,11,16,25,39,63,103,172,290,490,844,1464,2564,4522,8022,

%T 14325,25686,46382,84115,153327,280423,514798,948374,1752639,3248574,

%U 6037968,11250482,21013808,39336188,73788697,138689231,261150360,492602752,930716294

%N The number of prime-indexed primes below 2^n.

%C The data was calculated using Kim Walisch's primecount program.

%H Amiram Eldar, <a href="/A374151/b374151.txt">Table of n, a(n) for n = 0..77</a>

%H Kim Walisch, <a href="https://github.com/kimwalisch/primecount">Fast C++ prime counting function implementation (primecount)</a>.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Super-prime">Super-prime</a>.

%F a(n) = A000720(A007053(n)).

%F a(n) = A132090(2^n).

%e a(1) = 0 since primepi(primepi(2^1)) = primepi(primepi(2)) = primepi(1) = 0.

%e a(2) = 1 since primepi(primepi(2^2)) = primepi(primepi(4)) = primepi(2) = 1.

%t Table[PrimePi[PrimePi[2^n]], {n, 0, 40}]

%o (PARI) a(n) = primepi(primepi(2^n));

%Y Cf. A000720, A006450, A007053, A096359, A374150.

%K nonn

%O 0,4

%A _Amiram Eldar_, Jun 29 2024