OFFSET
1,1
COMMENTS
The following is a quotation from Hage-Hassan in his paper (see Link below). "The (concept of) right and left symmetry is fundamental in physics. This incites us to ask whether this symmetry is in (the) primes. Find the numbers n with a + a' = n. a, a' are primes and {a} are all the primes with: n/2 <= a < n and n = 2,3, ..."
LINKS
Mehdi Hage-Hassan, An elementary introduction to Quantum mechanic, hal-00879586 2013 pp 58.
EXAMPLE
182 is a term because the primitive practical numbers p in the range 91 <= p < 182 are {104, 140}. Also the complementary set {78, 42} has all its members primitive practical numbers.
MATHEMATICA
PracticalQ[n_] := Module[{f, p, e, prod=1, ok=True}, If[n<1||(n>1&&OddQ[n]), False, If[n==1, True, f=FactorInteger[n]; {p, e}=Transpose[f]; Do[If[p[[i]]>1+DivisorSigma[1, prod], ok=False; Break[]]; prod=prod*p[[i]]^e[[i]], {i, Length[p]}]; ok]]];
DivFreeQ[n_] := Module[{plst=First/@Select[FactorInteger[n], #[[2]]>1 &], m, ok=False}, Do[If[! PracticalQ[n/plst[[m]]], ok=True, ok=False; Break[]], {m, 1, Length@plst}]; ok];
PPracticalQ[n_] := PracticalQ[n]&&(SquareFreeQ[n]||DivFreeQ[n]);
plst[n_] := Select[Range[Ceiling[n/2], n-1], PPracticalQ]; lst={}; Do[If[plst[n]!={}&&AllTrue[n-plst[n], PPracticalQ], AppendTo[lst, n]], {n, 1, 10000}]; lst
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Frank M Jackson, Jun 26 2024
STATUS
approved