Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #9 Jun 30 2024 16:29:13
%S 1,1,3,24,400,11700,536256,35631232,3245577984,388702800000,
%T 59265098200000,11212953038217216,2578459154484215808,
%U 708372581870426497024,229171184991141120000000,86242576440372042240000000,37355382389967084527220883456,18452600861204793901808906698752
%N Row products of A351153.
%F a(n) = (-1/2)^n*Pochhammer((b(n)-2*n-1)/2, n)*Pochhammer((-b(n)-2*n-1)/2, n), where b(n) = sqrt(A033996(n) + 9).
%F a(n) ~ sqrt(Pi) * 2^(n+2) * n^(2*n - 3/2) / exp(2*n). - _Vaclav Kotesovec_, Jun 27 2024
%t A351153[n_,k_]:=n(k-1)-k(k-3)/2; a[n_]:=Product[A351153[n,k],{k,n}]; Array[a,18,0]
%o (PARI) a(n) = vecprod(vector(n, k, n*(k - 1) - k*(k - 3)/2)); \\ _Michel Marcus_, Jun 25 2024
%Y Cf. A005408, A033996, A351153.
%K nonn
%O 0,3
%A _Stefano Spezia_, Jun 25 2024