Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Aug 19 2024 11:41:09
%S 2,2,16,2,2,2,16,54,2,54,128,16,2,16,2,16,128,250,2,2,250,432,54,54,2,
%T 2,2,16,686,54,432,2,1024,128,686,16,128,16,2,2,1458,128,1024,2,2,
%U 2000,250,54,250,1458,2,16,2662,2,16,2,250,2000,2,3456,432,54,432
%N Greatest positive integer k for which the y-coordinates of the extreme points and the inflection point of y = f(x) = 1/k*(x - A373995(n))*(x - A373996(n)) are integers.
%F x-coordinate of the 1. extreme point: x3 = (x1 + x2 + sqrt(x1^2 + x2^2 - x1*x2))/3.
%F x-coordinate of the 2. extreme point: x4 = (x1 + x2 - sqrt(x1^2 + x2^2 - x1*x2))/3.
%F x-coordinate of the inflection point: x5 = (x1 + x2)/3 = (x3 + x4)/2.
%F k = GCD(f(x3), f(x4), f(x5)).
%e a(3) = 16, since y = f(x) = 1/16*(x - 18)*(x - 48) has the extrema (8, 200), (36, -486) and the inflection point (22, -143). Since GCD(200, -143, -486) = 1, there is no value of k > 16, for which the y-coordinates of these three points are all integers.
%p A373997:=proc(s)
%p local x_1,x_2,x_3,x_4,x_5,L;
%p L:=[];
%p for x_1 from 1 to floor((s-1)/2) do
%p x_2:=s-x_1;
%p x_3:=(x_1+x_2+sqrt(x_1^2+x_2^2-x_1*x_2))/3;
%p x_4:=(x_1+x_2-sqrt(x_1^2+x_2^2-x_1*x_2))/3;
%p if x_3=floor(x_3) and x_4=floor(x_4) then
%p x_5:=(x_3+x_4)/2;
%p L:=[op(L),gcd(gcd(x_3*(x_3-x_1)*(x_3-x_2), x_4*(x_4-x_1)*(x_4-x_2)), x_5*(x_5-x_1)*(x_5-x_2))];
%p fi;
%p od;
%p return op(L);
%p end proc;
%p seq(A373997(s),s=3..414);
%Y Cf. A373995 (values x1), A373996 (values x2), A364384, A364385.
%K nonn
%O 1,1
%A _Felix Huber_, Jul 07 2024
%E Data corrected by _Felix Huber_, Aug 18 2024