Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #57 Aug 14 2024 11:06:06
%S 0,1,1,3,1,3,3,7,1,3,5,7,3,7,7,15,1,3,6,7,5,11,13,15,3,7,11,15,7,15,
%T 15,31,1,3,6,7,9,13,14,15,5,11,21,23,13,27,29,31,3,7,14,15,11,23,27,
%U 31,7,15,23,31,15,31,31,63,1,3,6,7,12,13,14,15,9,19
%N a(n) is the least number whose binary expansion can be obtained by reversing one or more consecutive bits in the binary expansion of n.
%C This sequence has similarities with A087734; here we reverse some consecutive bits, there we negate some consecutive bits.
%H Rémy Sigrist, <a href="/A373886/b373886.txt">Table of n, a(n) for n = 0..8190</a>
%H <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>
%F a(n) <= n with equality iff n belongs to A000225.
%F a^k(n) = A038573(n) for k sufficiently large (where a^k denotes the k-th iterate of the sequence).
%F a(2^k) = 1 for any k >= 0.
%F A000120(a(n)) = A000120(n).
%e The first terms, alongside their binary expansion, are:
%e n a(n) bin(n) bin(a(n))
%e -- ---- ------ ---------
%e 0 0 0 0
%e 1 1 1 1
%e 2 1 10 1
%e 3 3 11 11
%e 4 1 100 1
%e 5 3 101 11
%e 6 3 110 11
%e 7 7 111 111
%e 8 1 1000 1
%e 9 3 1001 11
%e 10 5 1010 101
%e 11 7 1011 111
%e 12 3 1100 11
%e 13 7 1101 111
%e 14 7 1110 111
%e 15 15 1111 1111
%e 16 1 10000 1
%p f:= proc(n) local L,nL,i,j,k,r,x;
%p L:= convert(n,base,2);
%p nL:= nops(L);
%p r:= n;
%p for i from 1 to nL-1 do
%p for j from i+1 to nL do
%p r:= min(r, n + add((L[j-k]-L[i+k])*2^(i+k-1),k=0..j-i));
%p od od;
%p r
%p end proc:
%p map(f, [$0..100]); # _Robert Israel_, Aug 13 2024
%o (PARI) a(n, base = 2) = { my (d = if (n, digits(n, base), [0])); setbinop((i, j) -> fromdigits(concat([d[1..i-1], Vecrev(d[i..j]), d[j+1..#d]]), base), [1..#d])[1]; }
%o (Python)
%o def a(n):
%o b = bin(n)[2:]
%o return min(int(b[:i]+b[i:j][::-1]+b[j:], 2) for i in range(len(b)) for j in range(i, len(b)+1))
%o print([a(n) for n in range(74)]) # _Michael S. Branicky_, Aug 13 2024
%Y Cf. A000120, A000225, A038573, A087734, A331856.
%K nonn,base,look
%O 0,4
%A _Rémy Sigrist_, Aug 10 2024