login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes in A373801 in order of their appearance.
3

%I #23 Aug 07 2024 03:16:47

%S 2,7,29,137,7937,569,179,809,227,263,557,40193,797,464897,

%T 303868936193,3833,16097,4457,2309,4793,4937,10289,2693,11057,3002369,

%U 52673,27617,1823,7433,1907,497153,4133,269057,2438716790407169,2879,2903,93377,2999

%N Primes in A373801 in order of their appearance.

%C a(239) has 3137 decimal digits and is too long for inclusion in the b-file. - _Alois P. Heinz_, Aug 05 2024

%H Alois P. Heinz, <a href="/A373802/b373802.txt">Table of n, a(n) for n = 1..238</a> (first 91 terms from N. J. A. Sloane)

%p b:= proc(n) option remember; (m->

%p `if`(isprime(m), ithprime(n)+1, 2*m-1))(b(n-1))

%p end: b(1):=2:

%p g:= proc(n) option remember; local k; for k from 1+g(n-1)

%p while not isprime(b(k)) do od; k

%p end: g(0):=0:

%p a:= n-> b(g(n)):

%p seq(a(n), n=1..38); # _Alois P. Heinz_, Aug 05 2024

%t Reap[Module[{n = 1}, Nest[If[n++; PrimeQ[#], Sow[#];Prime[n] + 1, 2*# - 1] &, 2, 500]]][[2, 1]] (* _Paolo Xausa_, Aug 07 2024 *)

%o (Python)

%o from itertools import count

%o from sympy import isprime, nextprime

%o def A373802_gen(): # generator of terms

%o a, p = 2, 3

%o for i in count(1):

%o if isprime(a):

%o yield a

%o a = p+1

%o else:

%o a = (a<<1)-1

%o p = nextprime(p)

%o A373802_list = list(islice(A373802_gen(),20)) # _Chai Wah Wu_, Aug 05 2024

%Y Cf. A373801, A373803.

%K nonn

%O 1,1

%A _N. J. A. Sloane_, Aug 05 2024