%I #8 Jun 18 2024 10:01:59
%S 1,1,2,7,32,180,1210,9450,84000,836920,9234400,111742400,1471023400,
%T 20925905000,319830310800,5226116295400,90906373958400,
%U 1676967192700800,32697692264036800,671856896755844800,14509136903381120000,328520930667097168000
%N Expansion of e.g.f. exp(x^3 / (6 * (1 - x))) / (1 - x).
%F a(n) = n! * Sum_{k=0..floor(n/3)} binomial(n-2*k,n-3*k)/(6^k * k!).
%o (PARI) a(n) = n!*sum(k=0, n\3, binomial(n-2*k, n-3*k)/(6^k*k!));
%Y Cf. A130906, A361597, A373773.
%Y Cf. A000930, A361533.
%K nonn
%O 0,3
%A _Seiichi Manyama_, Jun 18 2024