login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A373763
Numbers k that are neither primes nor squares of primes such that A006134(k) - A102283(k) is divisible by k.
1
1, 27, 63, 81, 238, 243, 247, 279, 322, 580, 671, 729, 1222, 2074, 2187, 3172, 3550, 3577, 4185, 5589, 6561, 7805, 7957, 8239, 8701, 8890, 9040, 9064, 9523, 9730, 9898, 10087, 10138, 10549, 11074, 11176, 11440, 11473, 11920, 12232, 12430, 12604, 13900, 14287, 14410
OFFSET
1,2
COMMENTS
The congruence A006134(k) == A102283(k) (mod k) holds for all values of k that are primes or squares of primes.
LINKS
Moa Apagodu and Doron Zeilberger, Using the "Freshman's Dream" to Prove Combinatorial Congruences, The American Mathematical Monthly, Vol. 124, No. 7 (2017), pp. 597-608; arXiv preprint, arXiv:1606.03351 [math.CO], 2016.
Zhi-Wei Sun and Roberto Tauraso, On some new congruences for binomial coefficients, International Journal of Number Theory, Vol. 7, No. 3 (2011), pp. 645-662; arXiv preprint, arXiv:0709.1665 [math.NT], 2007-2011.
MATHEMATICA
q[n_] := !PrimeQ[n] && !PrimeQ[Sqrt[n]] && Divisible[Sum[Binomial[2*k, k], {k, 0, n - 1}] - JacobiSymbol[n, 3], n]; Select[Range[1000], q]
PROG
(PARI) is1(k) = !isprime(k) && !(issquare(k) && isprime(sqrtint(k)));
lista(kmax) = {my(s0 = 1, s1 = 3); print1(1, ", "); for(k = 2, kmax, s2 = ((5*k - 2) * s1 - 2 * (2*k - 1) * s0 )/k; if(is1(k + 1) && !((s2 - [1, -1, 0][k % 3 + 1]) % (k + 1)), print1(k + 1, ", ")); s0 = s1; s1 = s2); }
CROSSREFS
Sequence in context: A107580 A138610 A128530 * A044129 A044510 A338556
KEYWORD
nonn
AUTHOR
Amiram Eldar, Jun 18 2024
STATUS
approved