Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Jun 29 2024 12:30:28
%S 0,0,1,0,1,2,0,1,-2,3,0,1,-2,-3,4,0,1,-2,-3,4,5,0,1,-2,3,4,-5,6,0,1,2,
%T -3,4,-5,-6,7,0,1,-2,-3,4,-5,-6,-7,8,0,1,-2,-3,4,-5,-6,7,-8,9,0,1,-2,
%U -3,4,5,6,-7,-8,9,10,0,1,-2,3,4,5,-6,-7,-8,9,-10,11,0,1,-2,-3,4,-5,-6,-7,-8,9,-10,-11,12
%N Triangle read by rows: T(n, k) is k if k is a quadratic residue modulo n, otherwise is -k and is a quadratic nonresidue modulo n. T(0, 0) = 0 by convention.
%H Carl Friedrich Gauss, <a href="http://gdz.sub.uni-goettingen.de/dms/load/img/?PID=PPN373456743%7CLOG_0008">Vierter Abschnitt. Von den Congruenzen zweiten Grades. Quadratische Reste und Nichtreste. Art. 97</a>, in "Untersuchungen über die höhere Arithmetik", Hrsg. H. Maser, Verlag von Julius Springer, Berlin, 1889.
%H Peter Luschny, <a href="/A373748/a373748.txt">SageMath: is_quadratic_residue</a>.
%e Triangle starts:
%e [0] [0]
%e [1] [0, 1]
%e [2] [0, 1, 2]
%e [3] [0, 1, -2, 3]
%e [4] [0, 1, -2, -3, 4]
%e [5] [0, 1, -2, -3, 4, 5]
%e [6] [0, 1, -2, 3, 4, -5, 6]
%e [7] [0, 1, 2, -3, 4, -5, -6, 7]
%e [8] [0, 1, -2, -3, 4, -5, -6, -7, 8]
%e [9] [0, 1, -2, -3, 4, -5, -6, 7, -8, 9]
%e [10] [0, 1, -2, -3, 4, 5, 6, -7, -8, 9, 10]
%p QR := (a, n) -> ifelse(n = 0, 1, NumberTheory:-QuadraticResidue(a, n)):
%p for n from 0 to 10 do seq(a*QR(a, n), a = 0..n) od;
%t qr[n_] := qr[n] = Join[Table[PowerMod[k, 2, n], {k, 0, Floor[n/2]}], {n}];
%t T[0, 0] := 0; T[n_, k_] := If[MemberQ[qr[n], k], k, -k];
%t Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten
%o (SageMath)
%o def Trow(n):
%o q = set(mod(a * a, n) for a in range(n // 2 + 1)).union({n})
%o return [k if k in q else -k for k in range(n + 1)]
%o for n in range(11): print(Trow(n))
%Y Signed version of A002262.
%Y Cf. A000004 (column 0), A001477 (main diagonal), A255644(n) + n (row sums).
%Y Cf. A096008, A096013, A373749.
%K sign,tabl
%O 0,6
%A _Peter Luschny_, Jun 27 2024