login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=0..floor(n/3)} binomial(2*n-5*k,k).
4

%I #21 Sep 29 2024 19:39:01

%S 1,1,1,2,4,6,9,16,27,43,71,119,196,322,533,882,1455,2402,3970,6558,

%T 10829,17887,29548,48804,80608,133146,219925,363254,599998,991044,

%U 1636944,2703794,4465957,7376591,12184181,20125051,33241289,54905857,90690002,149795989

%N a(n) = Sum_{k=0..floor(n/3)} binomial(2*n-5*k,k).

%H Harvey P. Dale, <a href="/A373639/b373639.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,2,0,0,-1).

%F G.f.: 1 / (1 - x^3 - x/(1 - x^3)).

%F a(n) = a(n-1) + 2*a(n-3) - a(n-6) for n > 5.

%t LinearRecurrence[{1,0,2,0,0,-1},{1, 1, 1, 2, 4, 6},40] (* _James C. McMahon_, Jun 14 2024 *)

%t Table[Sum[Binomial[2n-5k,k],{k,0,Floor[n/3]}],{n,0,40}] (* _Harvey P. Dale_, Sep 29 2024 *)

%o (PARI) a(n) = sum(k=0, n\3, binomial(2*n-5*k, k));

%Y Cf. A000930, A373640.

%Y Cf. A052535, A122367, A373644.

%K nonn,easy

%O 0,4

%A _Seiichi Manyama_, Jun 12 2024