%I #17 Oct 05 2024 10:13:19
%S 0,1,2,3,4,4,6,5,8,7,8,5,12,7,10,12,14,6,14,7,17,15,10,5,24,11,14,15,
%T 22,7,24,9,24,15,12,20,30,10,14,21,35,9,30,9,26,30,10,5,42,15,22,18,
%U 34,7,30,20,46,21,14,5,51,13,18,43,42,30,30,9,35,15,40,9,62,13,20,33,40
%N Number of distinct subsets of Z/nZ generated by powers.
%C Choose p in Z/nZ, then generate the finite subset {1,p,p^2,p^3,p^4,...}. It often happens that two different p give the same subset. Therefore, there may be less distinct subsets than n. a(n) gives the numbers of distinct subsets generated by all p in Z/nZ. Note that the subsets generated by 0, 1, -1 are counted. Those subsets are {1,0}, {1}, {1,-1}.
%e a(7) = 5 because there are 5 distinct power generated subsets of Z/7Z, namely 0^i = {1,0}, 1^i = {1}, 2^i = {1,2,4}, 3^i = {1,3,2,6,4,5}, 6^i = {1,6}. 4^i generates the same subset as 2^i (in a different order, but that is irrelevant). 5^i generate the same subset as 3^i (in a different order).
%o (C++)
%o #include <iostream>
%o #include <vector>
%o #include <set>
%o using namespace std;
%o // computes the number of power generated subsets of Z/nZ
%o int A (int n)
%o {
%o // all subsets are stored here
%o set<vector<bool>> subsets;
%o for (int p=0; p<n; p++) {
%o // a n-bits vector of already seen powers of p
%o vector<bool> powers(n);
%o // fill in powers
%o for (int q=1; !powers[q]; q = (q*p)%n)
%o powers[q] = true;
%o // store one subset,
%o // but only if it is not already stored
%o subsets.insert(powers);
%o }
%o // return number of distinct subsets
%o return subsets.size();
%o }
%o int main()
%o {
%o for (int n=0; n<30; n++)
%o cout<<A(n)<<"\n";
%o }
%o (PARI) a(n) = #Set(vector(n, i, Set(vector(n, j, Mod(i-1, n)^(j-1))))); \\ _Michel Marcus_, Jun 12 2024
%K nonn
%O 0,3
%A _Thierry Banel_, Jun 11 2024