login
Numbers k such that the k-th maximal antirun of nonsquarefree numbers has length different from all prior maximal antiruns. Sorted positions of first appearances in A373409.
3

%I #5 Jun 11 2024 09:36:39

%S 1,2,4,6,8,10,18,52,678

%N Numbers k such that the k-th maximal antirun of nonsquarefree numbers has length different from all prior maximal antiruns. Sorted positions of first appearances in A373409.

%C The unsorted version is A373573.

%C An antirun of a sequence (in this case A013929) is an interval of positions at which consecutive terms differ by more than one.

%C Is this sequence finite? Are there only 9 terms?

%H Gus Wiseman, <a href="/A373403/a373403.txt">Four statistics for runs and antiruns of prime, nonprime, squarefree, and nonsquarefree numbers</a>.

%e The maximal antiruns of nonsquarefree numbers begin:

%e 4 8

%e 9 12 16 18 20 24

%e 25 27

%e 28 32 36 40 44

%e 45 48

%e 49

%e 50 52 54 56 60 63

%e 64 68 72 75

%e 76 80

%e 81 84 88 90 92 96 98

%e 99

%e The a(n)-th rows are:

%e 4 8

%e 9 12 16 18 20 24

%e 28 32 36 40 44

%e 49

%e 64 68 72 75

%e 81 84 88 90 92 96 98

%e 148 150 152

%e 477 480 484 486 488 490 492 495

%e 6345 6348 6350 6352 6354 6356 6358 6360 6363

%t t=Length/@Split[Select[Range[100000],!SquareFreeQ[#]&],#1+1!=#2&];

%t Select[Range[Length[t]],FreeQ[Take[t,#-1],t[[#]]]&]

%Y For squarefree runs we have the triple (1,3,5), firsts of A120992.

%Y For prime runs we have the triple (1,2,3), firsts of A175632.

%Y For nonsquarefree runs we have A373199 (assuming sorted), firsts of A053797.

%Y For squarefree antiruns: A373200, firsts of A373127, unsorted A373128.

%Y For composite runs we have A373400, firsts of A176246, unsorted A073051.

%Y For prime antiruns we have A373402, firsts of A027833, unsorted A373401.

%Y For composite antiruns we have the triple (1,2,7), firsts of A373403.

%Y Sorted positions of first appearances in A373409.

%Y The unsorted version is A373573.

%Y A005117 lists the squarefree numbers, first differences A076259.

%Y A013929 lists the nonsquarefree numbers, first differences A078147.

%Y Cf. A007674, A025157, A049094, A061399, A068781, A072284, A077643, A110969, A251092, A294242, A373410, A373412.

%K nonn,more

%O 1,2

%A _Gus Wiseman_, Jun 10 2024