Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Jun 25 2024 17:07:35
%S 1,2,3,2,4,2,5,3,4,5,2,6,3,4,6,3,5,6,2,7,3,4,7,3,5,7,3,6,7,4,5,6,7,2,
%T 8,3,4,8,3,5,8,3,6,8,4,5,6,8,3,7,8,4,5,7,8,4,6,7,8,2,9,3,4,9,3,5,9,3,
%U 6,9,4,5,6,9,3,7,9,4,5,7,9,4,6,7,9,3,8,9
%N Irregular triangle read by rows: T(1,1) = 1 and, for n >= 2, row n lists (in increasing order) the elements of the maximal Schreier set encoded by 2*A355489(n-1).
%C See A373556 (where elements in each set are listed in decreasing order) for more information.
%H Paolo Xausa, <a href="/A373558/b373558.txt">Table of n, a(n) for n = 1..10003</a> (rows 1..1892 of the triangle, flattend).
%H Alistair Bird, <a href="https://outofthenormmaths.wordpress.com/2012/05/13/jozef-schreier-schreier-sets-and-the-fibonacci-sequence/">Jozef Schreier, Schreier sets and the Fibonacci sequence</a>, Out Of The Norm blog, May 13 2012.
%H Hùng Việt Chu, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL22/Chu2/chu9.pdf">The Fibonacci Sequence and Schreier-Zeckendorf Sets</a>, Journal of Integer Sequences, Vol. 22 (2019), Article 19.6.5.
%e Triangle begins:
%e Corresponding
%e n 2*A355489(n-1) bin(2*A355489(n-1)) maximal Schreier set
%e (this sequence)
%e ---------------------------------------------------------------
%e 1 {1}
%e 2 6 110 {2, 3}
%e 3 10 1010 {2, 4}
%e 4 18 10010 {2, 5}
%e 5 28 11100 {3, 4, 4}
%e 6 34 100010 {2, 6}
%e 7 44 101100 {3, 4, 6}
%e 8 52 110100 {3, 5, 6}
%e 9 66 1000010 {2, 7}
%e 10 76 1001100 {3, 4, 7}
%e 11 84 1010100 {3, 5, 7}
%e 12 100 1100100 {3, 6, 7}
%e 13 120 1111000 {4, 5, 6, 7}
%e ...
%t Join[{{1}}, Map[PositionIndex[Reverse[IntegerDigits[#, 2]]][1] &, Select[Range[2, 500, 2], DigitCount[#, 2, 1] == IntegerExponent[#, 2] + 1 &]]]
%Y Subsequence of A373359.
%Y Cf. A143299 (conjectured row lengths), A355489, A373556, A373579, A373854 (row sums).
%K nonn,tabf,base,easy
%O 1,2
%A _Paolo Xausa_, Jun 10 2024