login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Irregular triangle read by rows: T(1,1) = 1 and, for n >= 2, row n lists (in decreasing order) the elements of the maximal Schreier set encoded by 2*A355489(n-1).
7

%I #30 Sep 13 2024 15:56:52

%S 1,3,2,4,2,5,2,5,4,3,6,2,6,4,3,6,5,3,7,2,7,4,3,7,5,3,7,6,3,7,6,5,4,8,

%T 2,8,4,3,8,5,3,8,6,3,8,6,5,4,8,7,3,8,7,5,4,8,7,6,4,9,2,9,4,3,9,5,3,9,

%U 6,3,9,6,5,4,9,7,3,9,7,5,4,9,7,6,4,9,8,3

%N Irregular triangle read by rows: T(1,1) = 1 and, for n >= 2, row n lists (in decreasing order) the elements of the maximal Schreier set encoded by 2*A355489(n-1).

%C A maximal Schreier set is a subset of the positive integers with cardinality equal to the minimum element in the set (see Chu link).

%C For n >= 2, each term k = 2*A355489(n-1) can be put into a one-to-one correspondence with a maximal Schreier set by interpreting the 1-based position of the ones in the binary expansion of k (where position 1 corresponds to the least significant bit) as the elements of the corresponding maximal Schreier set.

%C See A373558 for the elements in each set arranged in increasing order.

%C The number of sets having maximum element m (for m >= 2) is A000045(m-2).

%H Paolo Xausa, <a href="/A373556/b373556.txt">Table of n, a(n) for n = 1..10003</a> (rows 1..1892 of the triangle, flattend).

%H Alistair Bird, <a href="https://outofthenormmaths.wordpress.com/2012/05/13/jozef-schreier-schreier-sets-and-the-fibonacci-sequence/">Jozef Schreier, Schreier sets and the Fibonacci sequence</a>, Out Of The Norm blog, May 13 2012.

%H Hùng Việt Chu, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL22/Chu2/chu9.pdf">The Fibonacci Sequence and Schreier-Zeckendorf Sets</a>, Journal of Integer Sequences, Vol. 22 (2019), Article 19.6.5.

%e Triangle begins:

%e Corresponding

%e n 2*A355489(n-1) bin(2*A355489(n-1)) maximal Schreier set

%e (this sequence)

%e ---------------------------------------------------------------

%e 1 {1}

%e 2 6 110 {3, 2}

%e 3 10 1010 {4, 2}

%e 4 18 10010 {5, 2}

%e 5 28 11100 {5, 4, 3}

%e 6 34 100010 {6, 2}

%e 7 44 101100 {6, 4, 3}

%e 8 52 110100 {6, 5, 3}

%e 9 66 1000010 {7, 2}

%e 10 76 1001100 {7, 4, 3}

%e 11 84 1010100 {7, 5, 3}

%e 12 100 1100100 {7, 6, 3}

%e 13 120 1111000 {7, 6, 5, 4}

%e ...

%t Join[{{1}}, Map[Reverse[PositionIndex[Reverse[IntegerDigits[#, 2]]][1]] &, Select[Range[2, 500, 2], DigitCount[#, 2, 1] == IntegerExponent[#, 2] + 1 &]]]

%Y Subsequence of A373345.

%Y Cf. A000045, A143299 (conjectured row lengths), A355489, A373557, A373558, A373854 (row sums).

%K nonn,tabf,base,easy

%O 1,2

%A _Paolo Xausa_, Jun 09 2024