login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of log_2(1 + sqrt(2))/2.
0

%I #9 Jun 12 2024 17:20:36

%S 6,3,5,7,7,6,6,5,1,5,8,1,8,0,5,9,8,6,3,2,1,8,0,6,1,8,4,9,2,5,7,3,2,1,

%T 3,0,7,8,6,2,7,9,6,1,8,6,3,2,6,0,3,9,1,8,9,4,8,1,5,3,3,1,4,4,0,9,9,9,

%U 5,8,9,0,2,2,3,9,3,0,1,5,1,6,8,3,2,9,9,8,7,5,8,3,0,9,5,8,7,4,8,8

%N Decimal expansion of log_2(1 + sqrt(2))/2.

%H Wenjie Fang, <a href="http://www.arxiv.org/abs/2406.02971">Maximal number of subword occurrences in a word</a>, arXiv:2406.02971 [math.CO], 2024. See p. 7.

%e 0.6357766515818059863218061849257321307862796186326...

%t First[RealDigits[Log2[1+Sqrt[2]]/2,10,100]]

%Y Cf. A002193.

%K nonn,cons

%O 0,1

%A _Stefano Spezia_, Jun 09 2024