%I #11 Jun 07 2024 11:13:58
%S 1,1,1,1,1,3,5,7,9,21,37,57,81,169,301,485,729,1431,2549,4211,6561,
%T 12411,22045,36975,59049,109047,193029,326923,531441,965511,1703469,
%U 2903851,4782969,8590149,15111573,25875081,43046721,76670441,134539837,231087525
%N Expansion of 1/(1 - x/(1 - 8*x^4)^(1/4)).
%F a(4*n) = 9^(n-1) for n > 0.
%F a(n) = Sum_{k=0..floor(n/4)} 8^k * binomial(n/4-1,k).
%o (PARI) a(n) = sum(k=0, n\4, 8^k*binomial(n/4-1, k));
%Y Cf. A098615, A373512.
%K nonn
%O 0,6
%A _Seiichi Manyama_, Jun 07 2024