Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Jul 07 2024 13:34:05
%S 2,9,5,7,1,7,7,9,7,9,1,3,1,3,3,7,9,1,7,1,7,9,7,9,7,1,3,3,9,3,7,1,3,9,
%T 9,1,3,3,3,7,9,1,1,7,7,9,1,7,3,9,3,9,1,1,3,3,9,1,3,1,3,7,7,1,7,7,1,3,
%U 7,9,3,9,3,7,9,7,9,7,1,9,9,1,1,7,9,7,9,7,1,3,3,9,3,1,9,7,9,1,3,1,7,3,3,9,1
%N a(1) = 2; thereafter, a(n) = prime(n)^prime(n-1) (mod 10).
%C This sequence is not periodic.
%D Ilan Vardi, "Computational Recreations in Mathematica," Addison-Wesley Publishing, Redwood City, CA, 1991, p. 226-229.
%H Robert P. Munafo, <a href="https://mrob.com/pub/perl/hypercalc.html">Hypercalc - The Calculator That Doesn't Overflow</a>.
%H Robert P. Munafo, <a href="https://mrob.com/pub/seq/a092188.html">Sequence A092188, Smallest Positive Integer M such that 2^3^4^5^...^N = M mod N</a>.
%H Robert G. Wilson v, <a href="/A133612/a133612_2.txt">Mathematica coding for "SuperPowerMod" from Vardi</a>.
%H Wolfram cloud Function Repository, <a href="https://resources.wolframcloud.com/FunctionRepository/resources/PowerTowerMod">PowerTowerMod</a>.
%e a(2) = 3^2 (mod 10) = 9.
%e a(3) = 5^3 (mod 10) = 5.
%t a[n_] := Switch[ Mod[ Prime[n], 10], 1, 1, 3, If[ Mod[ Prime[n -1], 4] == 1, 3, 7], 5, 5, 7, If[ Mod[ Prime[n -1], 4] == 1, 7, 3], 9, 9]; a[1] = 2; a[2] = 9; Array[a, 105]
%o (PARI) a(n) = if(n<2, 2, lift(Mod(prime(n),10)^prime(n-1))) \\ _Hugo Pfoertner_, Jul 07 2024
%Y Cf. A000040, A092188, A133612, A171881, A171882, A213013, A336111, A342176.
%K nonn
%O 1,1
%A _Robert G. Wilson v_, Jun 06 2024