login
A373457
Number of losing integer partitions of n in the impartial combinatorial game LCTR (left column, top row).
0
0, 0, 1, 3, 3, 4, 7, 11, 12, 17, 24, 34, 40, 54, 73, 100, 125, 164, 208, 270, 337, 428, 534, 673, 828, 1033, 1276, 1584, 1938, 2385, 2909, 3559, 4318, 5252, 6346, 7678, 9230, 11108, 13309, 15953, 19034, 22719, 27019, 32132, 38084, 45129, 53326, 62988, 74200, 87371
OFFSET
1,4
LINKS
Eric Gottlieb, Matjaž Krnc, and Peter Muršič, Sprague-Grundy values and complexity for LCTR, Discrete Applied Mathematics, Discrete Applied Mathematics, Volume 346, 2024, Pages 154-169.
Eric Gottlieb, Jelena Ilić, and Matjaž Krnc, Some results on LCTR, an impartial game on partitions, Involve, Vol. 16 2023, No. 3, pages 529-546.
EXAMPLE
For n = 8, the a(8) = 11 losing partitions are the six nondegenerate hooks (7,1), (6, 1, 1), (5, 1, 1, 1), (4, 1, 1, 1, 1), (3, 1, 1, 1, 1, 1), (2, 1, 1, 1, 1, 1, 1) and (5, 3), (4, 4), (3, 3, 2), (2, 2, 2, 2), (2, 2, 2, 1, 1).
MATHEMATICA
<< "Combinatorica`"
Mex[Ls_] :=
If[Ls == {}, 0, Min[Complement[Table[n, {n, 0, Length[Ls]}], Ls]]]
LCTRMoves[Pttn_] :=
Union[{Rest[Pttn],
TransposePartition[Rest[TransposePartition[Pttn]]]}]
LCTRSG[Pttn_] :=
If[Pttn == {}, 0, LCTRSG[Pttn] = Mex[LCTRSG /@ LCTRMoves[Pttn]]]
NumLosingPttns[n_] :=
Table[{k,
Length[Select[IntegerPartitions[k], LCTRSG[#] == 0 &]]}, {k, 1,
n}] // TableForm
CROSSREFS
Cf. A000041.
Sequence in context: A087329 A298914 A205116 * A011959 A246023 A049927
KEYWORD
nonn
AUTHOR
Eric Gottlieb, Jun 06 2024
STATUS
approved