%I #6 Jun 13 2024 08:31:37
%S 1,0,1,0,2,1,0,6,12,7,1,0,24,108,144,73,15,1,0,120,1080,2640,2660,
%T 1221,267,27,1,0,720,11880,48720,82980,67350,28321,6344,751,44,1,0,
%U 5040,146160,955080,2529240,3262350,2245782,870283,195074,25267,1831,68,1
%N Triangle read by rows: Coefficients of the polynomials L(n, x) * EZ(n, x), where L denote the unsigned Lah polynomials and EZ the Eulerian zig-zag polynomials A205497.
%H Peter Luschny, <a href="/A373426/a373426.png">Illustrating the polynomials</a>.
%e Tracing the computation:
%e 0: [1] * [1] = [1]
%e 1: [1] * [0, 1] = [0, 1]
%e 2: [1] * [0, 2, 1] = [0, 2, 1]
%e 3: [1, 1] * [0, 6, 6, 1] = [0, 6, 12, 7, 1]
%e 4: [1, 3, 1] * [0, 24, 36, 12, 1] = [0, 24, 108, 144, 73, 15, 1]
%p # Using function EZP from A373432.
%p EZP((n, k) -> ifelse(n=k, 1, binomial(n-1, k-1)*n!/k!), 7);
%Y Cf. A271703 (Lah), A205497 (zig-zag Eulerian), A373425 (row sums).
%K nonn,tabf
%O 0,5
%A _Peter Luschny_, Jun 07 2024