login
A373421
Positive integers that cannot be written as a sum of a practical number and a pentagonal number.
0
10, 15, 22, 27, 103, 114, 186, 244, 494, 619, 1154, 1854, 2671
OFFSET
1,1
COMMENTS
Somu and Tran (2024) conjectured that there are finitely many such integers. It was also conjectured that 2671 is the largest such integer. This conjecture was checked up to 10^8.
LINKS
Sai Teja Somu and Duc Van Khanh Tran, On sums of practical numbers and polygonal numbers, Journal of Integer Sequences, 27(5), 2024.
MATHEMATICA
Lim=10^4; penlim=Ceiling[Sqrt[2Lim/3]];
PracticalQ[nn_] := Module[{f, p, e, prod=1, ok=True}, If[nn<1 || (nn>1 && OddQ[n]), False, If[nn==1, True, f=FactorInteger[nn]; {p, e} = Transpose[f]; Do[If[p[[i]] > 1+DivisorSigma[1, prod], ok=False; Break[]]; prod=prod*p[[i]]^e[[i]], {i, Length[p]}]; ok]]]; prac= Select[Range[Lim], PracticalQ] ;
seq={}; Do[pen=i(3i-1)/2; peni=prac+pen; AppendTo[seq, peni], {i, 0, penlim}] (* sums of pentagonal and practical numbers *);
Complement[Range[Lim], Union[Flatten[seq]]] (* James C. McMahon, Jun 10 2024 *)
CROSSREFS
Sequence in context: A115679 A337610 A109373 * A267329 A120138 A373613
KEYWORD
nonn,more,hard
AUTHOR
Duc Van Khanh Tran, Jun 04 2024
STATUS
approved