OFFSET
1,1
COMMENTS
Somu and Tran (2024) conjectured that there are finitely many such integers. It was also conjectured that 2671 is the largest such integer. This conjecture was checked up to 10^8.
LINKS
Sai Teja Somu and Duc Van Khanh Tran, On sums of practical numbers and polygonal numbers, Journal of Integer Sequences, 27(5), 2024.
MATHEMATICA
Lim=10^4; penlim=Ceiling[Sqrt[2Lim/3]];
PracticalQ[nn_] := Module[{f, p, e, prod=1, ok=True}, If[nn<1 || (nn>1 && OddQ[n]), False, If[nn==1, True, f=FactorInteger[nn]; {p, e} = Transpose[f]; Do[If[p[[i]] > 1+DivisorSigma[1, prod], ok=False; Break[]]; prod=prod*p[[i]]^e[[i]], {i, Length[p]}]; ok]]]; prac= Select[Range[Lim], PracticalQ] ;
seq={}; Do[pen=i(3i-1)/2; peni=prac+pen; AppendTo[seq, peni], {i, 0, penlim}] (* sums of pentagonal and practical numbers *);
Complement[Range[Lim], Union[Flatten[seq]]] (* James C. McMahon, Jun 10 2024 *)
CROSSREFS
KEYWORD
nonn,more,hard
AUTHOR
Duc Van Khanh Tran, Jun 04 2024
STATUS
approved