%I #8 Jun 10 2024 14:59:54
%S 1,3,8,23,29,33,45,98,153,188,216,262,281,366,428,589,737,1182,1830,
%T 1878,2190,2224,3076,3301,3384,3426,3643,3792,4521,4611,7969,8027,
%U 8687,12541,14356,14861,15782,17005,19025,23282,30801,31544,33607,34201,34214,38589
%N Numbers k such that the k-th maximal run of composite numbers has length different from all prior maximal runs. Sorted positions of first appearances in A176246 (or A046933 shifted).
%C The unsorted version is A073051.
%C A run of a sequence (in this case A002808) is an interval of positions at which consecutive terms differ by one.
%H Gus Wiseman, <a href="/A373403/a373403.txt">Four statistics for runs and antiruns of prime, nonprime, squarefree, and nonsquarefree numbers</a>
%e The maximal runs of composite numbers begin:
%e 4
%e 6
%e 8 9 10
%e 12
%e 14 15 16
%e 18
%e 20 21 22
%e 24 25 26 27 28
%e 30
%e 32 33 34 35 36
%e 38 39 40
%e 42
%e 44 45 46
%e 48 49 50 51 52
%e 54 55 56 57 58
%e 60
%e 62 63 64 65 66
%e 68 69 70
%e 72
%e 74 75 76 77 78
%e 80 81 82
%e 84 85 86 87 88
%e 90 91 92 93 94 95 96
%e 98 99 100
%e The a(n)-th rows are:
%e 4
%e 8 9 10
%e 24 25 26 27 28
%e 90 91 92 93 94 95 96
%e 114 115 116 117 118 119 120 121 122 123 124 125 126
%e 140 141 142 143 144 145 146 147 148
%e 200 201 202 203 204 205 206 207 208 209 210
%t t=Length/@Split[Select[Range[10000],CompositeQ],#1+1==#2&]//Most;
%t Select[Range[Length[t]],FreeQ[Take[t,#-1],t[[#]]]&]
%Y The unsorted version is A073051, firsts of A176246.
%Y For squarefree runs we have the triple (1,3,5), firsts of A120992.
%Y For prime runs we have the triple (1,2,3), firsts of A175632.
%Y For squarefree antiruns we have A373128, firsts of A373127.
%Y For nonsquarefree runs we have A373199 (assuming sorted), firsts of A053797.
%Y For prime antiruns we have A373402, unsorted A373401, firsts of A027833.
%Y For composite runs we have the triple (1,2,7), firsts of A373403.
%Y A000040 lists the primes, differences A001223.
%Y A002808 lists the composite numbers, differences A073783.
%Y A046933 counts composite numbers between primes.
%Y A065855 counts composite numbers up to n.
%Y Cf. A006512, A007674, A049093, A068781, A072284, A077641, A174965, A251092, A373198, A373408, A373411.
%K nonn
%O 1,2
%A _Gus Wiseman_, Jun 10 2024