login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A373339
Number of permutations in symmetric group S_n with an even number of cycles of length 2 or more.
3
1, 1, 1, 1, 4, 36, 296, 2360, 19776, 180544, 1812352, 19953792, 239490560, 3113487872, 43589096448, 653837077504, 10461394714624, 177843713556480, 3201186851815424, 60822550202187776, 1216451004083601408, 25545471085844758528, 562000363888782868480
OFFSET
0,5
FORMULA
a(n) = n!/2 - (n-2)*2^(n-2) = A001710(n) - A036289(n-2).
a(n) = A000142(n) - A373340(n).
E.g.f.: (1/(1 - x) + exp(2*x)*(1 - x))/2. - Stefano Spezia, Jun 05 2024
EXAMPLE
a(1)=a(2)=a(3)=1 due to S_1,S_2,S_3 containing 1 permutation with an even number of non-fixed point cycles: the identity permutation, with 0 non-fixed point cycles.
a(4)=4 due to S_4 containing 4 permutations with an even number of non-fixed point cycles: the 3 (2,2)-cycles (12)(34),(13)(24),(14)(23); and the identity permutation (1)(2)(3)(4).
PROG
(PARI) a(n) = n!/2 - (n-2)*2^(n-2); \\ Michel Marcus, Jun 05 2024
CROSSREFS
Cf. A373340 (odd case), A000142, A001710, A036289.
Row sums of triangle A373417.
Sequence in context: A240889 A108019 A241104 * A361554 A222428 A279581
KEYWORD
nonn
AUTHOR
STATUS
approved