login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers prime(k) such that prime(k) - prime(k-1) = prime(k+2) - prime(k+1).
1

%I #25 Jun 30 2024 22:00:32

%S 7,11,13,17,29,41,59,79,101,103,107,113,139,163,181,193,227,257,269,

%T 311,359,379,397,419,421,439,461,487,491,547,569,577,599,691,701,709,

%U 761,811,823,857,863,881,887,919,983,1021,1049,1051,1091,1109,1163

%N Numbers prime(k) such that prime(k) - prime(k-1) = prime(k+2) - prime(k+1).

%H Robert Israel, <a href="/A373299/b373299.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = A151800(A022885(n)).

%e 7 is in the list because the prime previous to 7 is 5 and the next primes after 7 are 11 and 13, so we have 7 - 5 = 13 - 11 = 2.

%p P:= select(isprime,[seq(i,i=3..10^4,2)]):

%p G:= P[2..-1]-P[1..-2]: nG:= nops(G):

%p J:= select(t -> G[t-1]=G[t+1],[$2..nG-1]):

%p P[J]; # _Robert Israel_, May 31 2024

%t Select[Partition[Prime[Range[200]], 4, 1], #[[2]] - #[[1]] == #[[4]] - #[[3]] &][[;; , 2]] (* _Amiram Eldar_, May 31 2024 *)

%o (Python)

%o from sympy import prime

%o def ok(k):

%o return prime(k)-prime(k-1) == prime(k+2)-prime(k+1)

%o print([prime(k) for k in range(2,200) if ok(k)])

%o (Python)

%o from sympy import nextprime

%o from itertools import islice

%o def agen(): # generator of terms

%o p, q, r, s = [2, 3, 5, 7]

%o while True:

%o if q-p == s-r: yield q

%o p, q, r, s = q, r, s, nextprime(s)

%o print(list(islice(agen(), 60))) # _Michael S. Branicky_, May 31 2024

%Y Cf. A001223, A022885, A151800, A263674.

%K nonn

%O 1,1

%A _Alexandre Herrera_, May 31 2024