OFFSET
1,1
LINKS
Robert C. Vaughan and Kevin L. Weis, On sigma-phi numbers, Mathematika 48 (2001), 169-189.
EXAMPLE
For k = 3550 = 2 * 5^2 * 71, k-1 = 3549 is divisible by phi(2) + phi(5^2) + phi(71) = (2-1) + (5^2-5) + (71-1) = 91.
MAPLE
with(numtheory):
f := proc(n)
nops(numtheory[factorset](n))
end proc:
sum_phi := proc(n)
local prime_divisors, sum:
prime_divisors := ifactors(n)[2]:
if f(n) >= 2 then
sum := add(prime_divisors[i][1]^prime_divisors[i][2] - prime_divisors[i][1]^(prime_divisors[i][2]-1), i = 1 .. nops(prime_divisors)):
else
sum := 0:
end if:
sum:
end proc:
valid_n := proc(n)
local sum_val:
sum_val := sum_phi(n):
if sum_val <> 0 and (n-1) mod sum_val = 0 then
return true:
else
return false:
end if:
end proc:
result := select(valid_n, [$2 .. 5000]);
MATHEMATICA
f[p_, e_] := (p-1) * p^(e-1); Select[Range[6000], CompositeQ[#] && Divisible[# - 1, Plus @@ f @@@ FactorInteger[#]] &] (* Amiram Eldar, May 29 2024 *)
PROG
(PARI) isok(k) = if (k>1 && !isprime(k), my(f=factor(k)); (k-1) % sum(i=1, #f~, eulerphi(f[i, 1]^f[i, 2])) == 0; ) \\ Michel Marcus, May 29 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Rafik Khalfi, May 29 2024
STATUS
approved