Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Jun 01 2024 18:20:08
%S 1,2,4,9,22,55,136,331,798,1919,4620,11143,26906,64987,156944,378939,
%T 914822,2208455,5331476,12871151,31073778,75019219,181113240,
%U 437246723,1055606686,2548458047,6152518684,14853491319,35859501322,86572502155,209004522016
%N Binomial transform of A135318.
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-5,2,2).
%F G.f.: (1 - 2*x + x^2 + x^3)/((1 - 2*x - x^2)*(1 - 2*x + 2*x^2)). - _Vaclav Kotesovec_, May 29 2024
%F a(n) = A114203(n+1)/2. - _Hugo Pfoertner_, May 29 2024
%F E.g.f.: exp(x)*(2*cos(x) + 4*cosh(sqrt(2)*x) + 3*sqrt(2)*sinh(sqrt(2)*x))/6. - _Stefano Spezia_, May 29 2024
%t CoefficientList[Series[(1 - 2*x + x^2 + x^3)/((1 - 2*x - x^2)*(1 - 2*x + 2*x^2)), {x, 0, 30}], x] (* _Vaclav Kotesovec_, May 29 2024 *)
%Y Cf. A135318.
%Y Cf. A114203.
%K nonn,easy
%O 0,2
%A _Paul Curtz_, May 29 2024
%E More terms from _Vaclav Kotesovec_, May 29 2024