Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 May 28 2024 05:28:52
%S 1,3,7,6,7,6,6,7,3,9,0,7,4,8,8,8,2,2,6,1,2,7,1,6,5,9,4,8,2,5,0,4,1,6,
%T 2,9,9,0,8,7,1,2,4,3,9,0,3,7,9,9,2,6,4,1,7,7,1,3,3,1,1,4,6,0,8,1,8,7,
%U 8,4,8,4,2,6,3,7,1,7,0,5,2,1,9,1,7,8,2,1,0,0,4,1,8,1,9,1,3,2,4,1,0,9,4,3,5
%N Decimal expansion of Product_{k>=1} f(2*k)^2/(f(2*k-1) * f(2*k+1)), where f(k) = k^(1/k).
%H Dirk Huylebrouck, <a href="https://doi.org/10.4169/amer.math.monthly.122.04.371">Generalizing Wallis' formula</a>, The American Mathematical Monthly, Vol. 122, No. 4 (2015), pp. 371-372; <a href="https://www.jstor.org/stable/10.4169/amer.math.monthly.122.04.371">alternative link</a>; <a href="https://arxiv.org/abs/1402.6577">arXiv preprint</a>, arXiv:1402.6577 [math.HO], 2014.
%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DirichletEtaFunction.html">Dirichlet Eta Function</a>.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Dirichlet_eta_function">Dirichlet eta function</a>.
%F Equals exp(2*eta'(1)) = exp(2*A091812), where eta is the Dirichlet eta function.
%F Equals 2^(2*gamma - log(2)), where gamma is Euler's constant (A001620).
%e (2^(1/2)/1^1) * (2^(1/2)/3^(1/3)) * (4^(1/4)/3^(1/3)) * (4^(1/4)/5^(1/5)) * ...
%e 1.37676673907488822612716594825041629908712439037992...
%t RealDigits[2^(2*EulerGamma - Log[2]), 10, 120][[1]]
%o (PARI) 2^(2*Euler - log(2))
%Y Cf. A001620, A002162, A091812, A373208.
%K nonn,cons
%O 1,2
%A _Amiram Eldar_, May 28 2024