%I #11 May 27 2024 09:56:20
%S 1,4,10,21,35,56,84,124,165,220,286,374,455,560,680,837,969,1140,1330,
%T 1575,1771,2024,2300,2656,2925,3276,3654,4144,4495,4960,5456,6108,
%U 6545,7140,7770,8601,9139,9880,10660,11700,12341,13244,14190,15466,16215,17296,18424
%N Expansion of Sum_{k>=0} x^(4^k) / (1 - x^(4^k))^4.
%F G.f. A(x) satisfies A(x) = x/(1 - x)^4 + A(x^4).
%F a(4*n+1) = A000292(4*n+1), a(4*n+2) = A000292(4*n+2), a(4*n+3) = A000292(4*n+3) and a(4*n+4) = A000292(4*n+4) + a(n+1) for n >= 0.
%Y Cf. A129527, A373186.
%Y Cf. A373188, A373189.
%Y Cf. A000292.
%K nonn
%O 1,2
%A _Seiichi Manyama_, May 27 2024