%I #9 Jun 10 2024 08:52:59
%S 1,3,10,8,19,162,1853,2052,1633,26661,46782,3138650,1080330
%N Least k such that the k-th maximal antirun of squarefree numbers has length n. Position of first appearance of n in A373127.
%C An antirun of a sequence (in this case A005117) is an interval of positions at which consecutive terms differ by more than one.
%H Gus Wiseman, <a href="/A373403/a373403.txt">Four statistics for runs and antiruns of prime, nonprime, squarefree, and nonsquarefree numbers</a>
%e The maximal antiruns of squarefree numbers begin:
%e 1
%e 2
%e 3 5
%e 6
%e 7 10
%e 11 13
%e 14
%e 15 17 19 21
%e 22
%e 23 26 29
%e 30
%e 31 33
%e 34
%e 35 37
%e The a(n)-th rows are:
%e 1
%e 3 5
%e 23 26 29
%e 15 17 19 21
%e 47 51 53 55 57
%e 483 485 487 489 491 493
%e For example, (23, 26, 29) is the first maximal antirun of 3 squarefree numbers, so a(3) = 10.
%t t=Length/@Split[Select[Range[10000],SquareFreeQ[#]&],#1+1!=#2&]//Most;
%t spnm[y_]:=Max@@NestWhile[Most,y,Union[#]!=Range[Max@@#]&];
%t Table[Position[t,k][[1,1]],{k,spnm[t]}]
%Y For composite instead of squarefree we have A073051.
%Y Positions of first appearances in A373127.
%Y The version for nonsquarefree runs is A373199, firsts of A053797.
%Y For prime instead of squarefree we have A373401, firsts of A027833.
%Y A005117 lists the squarefree numbers, first differences A076259.
%Y A013929 lists the nonsquarefree numbers, first differences A078147.
%Y Cf. A006512, A007674, A049093, A068781, A072284, A077641, A120992, A174965, A251092, A373198, A373408, A373411.
%K nonn,more
%O 1,2
%A _Gus Wiseman_, Jun 08 2024