login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of all squarefree numbers from 2^(n-1) to 2^n - 1.
12

%I #10 May 29 2024 07:05:17

%S 1,5,18,63,218,891,3676,15137,60580,238672,953501,3826167,15308186,

%T 61204878,244709252,979285522,3917052950,15664274802,62663847447,

%U 250662444349,1002632090376,4010544455838,16042042419476,64168305037147,256675237863576

%N Sum of all squarefree numbers from 2^(n-1) to 2^n - 1.

%e This is the sequence of row sums of A005117 treated as a triangle with row-lengths A077643:

%e 1

%e 2 3

%e 5 6 7

%e 10 11 13 14 15

%e 17 19 21 22 23 26 29 30 31

%e 33 34 35 37 38 39 41 42 43 46 47 51 53 55 57 58 59 61 62

%t Table[Total[Select[Range[2^(n-1),2^n-1],SquareFreeQ]],{n,10}]

%o (PARI) a(n) = my(s=0); forsquarefree(i=2^(n-1), 2^n-1, s+=i[1]); s; \\ _Michel Marcus_, May 29 2024

%Y Counting all numbers (not just squarefree) gives A010036.

%Y For the sectioning of A005117:

%Y Row-lengths are A077643, partial sums A143658.

%Y First column is A372683, delta A373125, indices A372540, firsts of A372475.

%Y Last column is A372889, delta A373126, indices A143658, diffs A077643.

%Y For primes instead of powers of two:

%Y - sum A373197

%Y - length A373198 = A061398 - 1

%Y - maxima A112925, opposite A112926

%Y For prime instead of squarefree:

%Y - sum A293697 (except initial terms)

%Y - length A036378

%Y - min A104080 or A014210, indices A372684 (firsts of A035100)

%Y - max A014234, delta A013603

%Y A000120 counts ones in binary expansion (binary weight), zeros A080791.

%Y A005117 lists squarefree numbers, first differences A076259.

%Y A030190 gives binary expansion, reversed A030308.

%Y A070939 or (preferably) A029837 gives length of binary expansion.

%Y Cf. A372473 (firsts of A372472), A372541 (firsts of A372433).

%Y Cf. A029931, A048793, A049093, A049094, A059015, A069010, A077641.

%K nonn

%O 1,2

%A _Gus Wiseman_, May 27 2024