login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions of n such that (smallest part) > 2*(number of parts).
4

%I #7 May 22 2024 11:33:14

%S 1,0,0,1,1,1,1,1,1,1,2,2,3,3,4,4,5,5,6,6,7,8,9,10,12,13,15,17,19,21,

%T 24,26,29,32,35,38,43,46,51,56,62,67,75,81,90,98,108,117,130,140,154,

%U 167,183,197,216,233,254,274,298,321,350,376,408,440,477,513,556,598,647

%N Number of partitions of n such that (smallest part) > 2*(number of parts).

%F G.f.: Sum_{k>=0} x^(2*k^2+k)/Product_{j=1..k} (1-x^j).

%o (PARI) my(N=70, x='x+O('x^N)); Vec(sum(k=0, N, x^(2*k^2+k)/prod(j=1, k, 1-x^j)))

%Y Cf. A003106, A373074, A373075, A373076.

%Y Cf. A350893, A373067.

%K nonn

%O 0,11

%A _Seiichi Manyama_, May 22 2024