login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n,k), n >= 0, 0 <= k <= n, read by rows, where T(n,k) is the number of distinct partitions p of n such that max(p) is a multiple of k.
2

%I #13 May 20 2024 08:56:59

%S 1,0,1,0,1,1,0,2,1,1,0,2,1,1,1,0,3,1,1,1,1,0,4,2,2,1,1,1,0,5,3,1,2,1,

%T 1,1,0,6,3,1,2,2,1,1,1,0,8,4,3,2,2,2,1,1,1,0,10,5,3,2,3,2,2,1,1,1,0,

%U 12,6,4,2,3,3,2,2,1,1,1,0,15,7,6,3,3,4,3,2,2,1,1,1,0,18,9,6,4,3,4,4,3,2,2,1,1,1

%N Triangle T(n,k), n >= 0, 0 <= k <= n, read by rows, where T(n,k) is the number of distinct partitions p of n such that max(p) is a multiple of k.

%F For k > 0, g.f. of column k: Sum_{i>=0} x^(k*i) * Product_{j=1..k*i-1} (1+x^j).

%e Triangle begins:

%e 1;

%e 0, 1;

%e 0, 1, 1;

%e 0, 2, 1, 1;

%e 0, 2, 1, 1, 1;

%e 0, 3, 1, 1, 1, 1;

%e 0, 4, 2, 2, 1, 1, 1;

%e 0, 5, 3, 1, 2, 1, 1, 1;

%e 0, 6, 3, 1, 2, 2, 1, 1, 1;

%e 0, 8, 4, 3, 2, 2, 2, 1, 1, 1;

%e 0, 10, 5, 3, 2, 3, 2, 2, 1, 1, 1;

%e 0, 12, 6, 4, 2, 3, 3, 2, 2, 1, 1, 1;

%e 0, 15, 7, 6, 3, 3, 4, 3, 2, 2, 1, 1, 1;

%e 0, 18, 9, 6, 4, 3, 4, 4, 3, 2, 2, 1, 1, 1;

%Y Row sums give A373030.

%Y Column k=0..3 give A000007, A000009, A026838, A372893.

%Y T(2n,n) gives A000009.

%Y Cf. A363048.

%K nonn,tabl

%O 0,8

%A _Seiichi Manyama_, May 20 2024