login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Numbers k that divide the k-th tangent (or "zag") number.
0

%I #7 May 18 2024 01:49:36

%S 1,2,4,8,16,32,64,68,128,256,512,592,1024,1156,2048,2056,4096,4112,

%T 8192,8224,8576,10928,16384,16448,19652,20512,28936,32768,37888,41024,

%U 43882,64804,65536,82048

%N Numbers k that divide the k-th tangent (or "zag") number.

%C Numbers k such that k | A000182(k).

%C All the powers of 2 are terms.

%e 2 is a term since A000182(2) = 2 is divisible by 2.

%e 4 is a term since A000182(4) = 272 = 4 * 68 is divisible by 4.

%t Select[Range[1000], Divisible[((-4)^# - (-16)^#) * BernoulliB[2*#]/(2*#), #] &]

%o (PARI) is(n) = (((-4)^n - (-16)^n) * bernfrac(2*n) / (2*n)) % n == 0;

%Y Cf. A000182.

%Y Similar sequences: A014847 (Catalan), A016089 (Lucas), A023172 (Fibonacci), A051177 (partition), A232570 (tribonacci), A246692 (Pell), A266969 (Motzkin).

%K nonn,more

%O 1,2

%A _Amiram Eldar_, May 17 2024