login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the sum of all symmetric valleys in the set of flattened Catalan words of length n.
1

%I #14 May 17 2024 01:42:30

%S 1,7,33,133,496,1770,6142,20902,70107,232489,763927,2491107,8071234,

%T 26007364,83402988,266351548,847482277,2687729595,8499036925,

%U 26804655025,84336597636,264777690382,829636763338,2594821366338,8102197327711,25259791668925,78638974063827

%N a(n) is the sum of all symmetric valleys in the set of flattened Catalan words of length n.

%C The g.f. listed in Baril et al. has a mistake in the numerator: the factor (1 + 2*x) should be (1 - 2*x).

%H Jean-Luc Baril, Pamela E. Harris, and José L. Ramírez, <a href="https://arxiv.org/abs/2405.05357">Flattened Catalan Words</a>, arXiv:2405.05357 [math.CO], 2024. See p. 18.

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (9,-30,46,-33,9).

%F From Baril et al.: (Start)

%F G.f.: x^4*(1 - 2*x)/((1 - 3*x)^2*(1 - x)^3).

%F a(n) = (3^n*(2*n - 5) - 18*n^2 + 54*n - 27)/144. (End)

%F E.g.f.: (32 + exp(3*x)*(6*x - 5) - 9*exp(x)*(2*x^2 - 4*x + 3))/144.

%F a(n) - a(n-1) = A261064(n-3).

%t LinearRecurrence[{9,-30,46,-33,9},{1,7,33,133,496},28]

%Y Cf. A261064, A371963, A371964, A372875.

%K nonn,easy

%O 4,2

%A _Stefano Spezia_, May 15 2024