Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 May 17 2024 03:27:02
%S 1,2,4,1,8,6,16,24,1,32,80,10,64,240,60,1,128,672,280,14,256,1792,
%T 1120,112,1,512,4608,4032,672,18,1024,11520,13440,3360,180,1,2048,
%U 28160,42240,14784,1320,22,4096,67584,126720,59136,7920,264,1,8192,159744,366080,219648,41184,2288,26
%N Irregular triangle read by rows: T(n,k) is the number of flattened Catalan words of length n with exactly k runs of weak ascents, with 1 <= k <= ceiling(n/2).
%C With offset 0 for the variable k, T(n,k) is the number of flattened Catalan words of length n with exactly k peaks. In such case, T(4,1) = 6 corresponds to 6 flattened Catalan words of length 4 with 1 peak: 0010, 0100, 0110, 0101, 0120, and 0121. See Baril et al. at page 20.
%H Jean-Luc Baril, Pamela E. Harris, and José L. Ramírez, <a href="https://arxiv.org/abs/2405.05357">Flattened Catalan Words</a>, arXiv:2405.05357 [math.CO], 2024. See pp. 8-9.
%F G.f.: (1-2*x)*x*y/(1 - 4*x + 4*x^2 - x^2*y).
%F T(n,k) = 2^(n-2*k+1)*binomial(n-1, 2*k-2).
%F T(n,1) = A000079(n-1).
%F T(n,2) = A001788(n-2).
%F T(n,3) = A003472(n-1).
%F T(n,4) = A002409(n-7).
%F T(n,5) = A140325(n-9).
%F T(n,6) = A172242(n-1).
%F Sum_{k>=0} T(n,k) = A007051(n-1).
%e The irregular triangle begins:
%e 1;
%e 2;
%e 4, 1;
%e 8, 6;
%e 16, 24, 1;
%e 32, 80, 10;
%e 64, 240, 60, 1;
%e 128, 672, 280, 14;
%e 256, 1792, 1120, 112, 1;
%e ...
%e T(4,2) = 6 since there are 6 flattened Catalan words of length 4 with 2 runs of weak ascents: 0010, 0100, 0101, 0110, 0120, and 0121.
%t T[n_,k_]:=SeriesCoefficient[(1-2x)*x*y/(1-4*x+4*x^2-x^2*y),{x,0,n},{y,0,k}]; Table[T[n,k],{n,14},{k,Ceiling[n/2]}] //Flatten (* or *)
%t T[n_,k_]:=2^(n-2k+1)Binomial[n-1,2k-2]; Table[T[n,k],{n,14},{k,Ceiling[n/2]}]
%Y Cf. A000079, A001788, A002409, A003472, A007051 (row sums), A110654 (row lengths), A140325, A172242.
%Y Cf. A372852, A372972.
%K nonn,tabf
%O 1,2
%A _Stefano Spezia_, May 15 2024