login
Number of ways two dihexes can be placed on an n-th regular hexagonal board.
1

%I #34 Aug 28 2024 04:18:25

%S 0,33,702,3630,11409,27603,56748,104352,176895,281829,427578,623538,

%T 880077,1208535,1621224,2131428,2753403,3502377,4394550,5447094,

%U 6678153,8106843,9753252,11638440,13784439,16214253,18951858,22022202,25451205,29265759,33493728

%N Number of ways two dihexes can be placed on an n-th regular hexagonal board.

%H Paolo Xausa, <a href="/A372855/b372855.txt">Table of n, a(n) for n = 1..10000</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).

%F a(n) = (3/2)*(27*n^4 - 90*n^3 + 78*n^2 + 11*n - 24), for n > 1.

%F a(n) = 5*a(n - 1) - 10*a(n - 2) + 10*a(n - 3) - 5*a(n - 4) + a(n - 5) for n > 6.

%F G.f.: 3*x^2*(11 + 179*x + 150*x^2 - 17*x^3 + x^4)/(1 - x)^5.

%F E.g.f.: 36 - 3*x + 3*exp(x)*(27*x^4 + 72*x^3 - 3*x^2 + 26*x - 24)/2. - _Stefano Spezia_, Jun 04 2024

%e Regular hexagonal boards n = 1...4:

%e . ___

%e ./ \

%e .\___/

%e . ___

%e . ___/ \___

%e ./ \___/ \

%e .\___/ \___/

%e ./ \___/ \

%e .\___/ \___/

%e . \___/

%e . ___

%e . ___/ \___

%e . ___/ \___/ \___

%e ./ \___/ \___/ \

%e .\___/ \___/ \___/

%e ./ \___/ \___/ \

%e .\___/ \___/ \___/

%e ./ \___/ \___/ \

%e .\___/ \___/ \___/

%e . \___/ \___/

%e . \___/

%e . ___

%e . ___/ \___

%e . ___/ \___/ \___

%e . ___/ \___/ \___/ \___

%e ./ \___/ \___/ \___/ \

%e .\___/ \___/ \___/ \___/

%e ./ \___/ \___/ \___/ \

%e .\___/ \___/ \___/ \___/

%e ./ \___/ \___/ \___/ \

%e .\___/ \___/ \___/ \___/

%e ./ \___/ \___/ \___/ \

%e .\___/ \___/ \___/ \___/

%e . \___/ \___/ \___/

%e . \___/ \___/

%e . \___/

%e For n = 2 the a(2) = 33: (without grid)

%e . . . . . . . . . . . . . . . . . . .

%e . x---x . x---x . x---x .

%e . . . .

%e . x---x o . o x---x . o o o .

%e . . . .

%e . o o . o o . x---x .

%e . . . . . . . . . . . . . . . . . . .

%e . x---x . x---x . x---x .

%e . . . .

%e . x o o . o x o . o x o .

%e . \ . \ . / .

%e . x o . o x . x o .

%e . . . . . . . . . . . . . . . . . . .

%e . x---x . o o . o x .

%e . . . \ .

%e . o o x . x---x o . x---x x .

%e . / . . .

%e . o x . x---x . o o .

%e . . . . . . . . . . . . . . . . . . .

%e . o o . o o . o o .

%e . . . .

%e . x---x x . o x---x . x x---x .

%e . / . . \ .

%e . o x . x---x . x o .

%e . . . . . . . . . . . . . . . . . . .

%e . x o . x o . o x .

%e . / . \ . \ .

%e . x x---x . o x o . o o x .

%e . . . .

%e . o o . x---x . x---x .

%e . . . . . . . . . . . . . . . . . . .

%e . x o . o x . x x .

%e . / . / . \ \ .

%e . x o o . o x o . o x x .

%e . . . .

%e . x---x . x---x . o o .

%e . . . . . . . . . . . . . . . . . . .

%e . x o . x o . o x .

%e . \ . \ . \ .

%e . x x o . o x x . x o x .

%e . \ . / . \ .

%e . x o . o x . x o .

%e . . . . . . . . . . . . . . . . . . .

%e . o x . x x . o x .

%e . \ . / \ . \ .

%e . o x x . x o x . o x x .

%e . \ . . / .

%e . o x . o o . x o .

%e . . . . . . . . . . . . . . . . . . .

%e . o o . o x . o o .

%e . . / . .

%e . x x o . x x o . x o x .

%e . \ \ . \ . \ / .

%e . x x . x o . x x .

%e . . . . . . . . . . . . . . . . . . .

%e . x o . x x . x o .

%e . / . / / . / .

%e . x x o . x x o . x x o .

%e . \ . . / .

%e . o x . o o . x o .

%e . . . . . . . . . . . . . . . . . . .

%e . x o . o x . o o .

%e . / . / . .

%e . x o x . o x x . o x x .

%e . / . / . / / .

%e . o x . o x . x x .

%e . . . . . . . . . . . . . . . . . . .

%t LinearRecurrence[{5, -10, 10, -5, 1}, {0, 33, 702, 3630, 11409, 27603}, 50] (* _Paolo Xausa_, Aug 28 2024 *)

%Y Cf. A000384, A242856.

%K nonn,easy

%O 1,2

%A _Nicolas Bělohoubek_, May 15 2024